The Friary Sixth Form

Chemistry Summer Project Pack 2023

Summer Tasks

In Year 13 we will be making aspirin as part of our organic Chemistry.

Your task for September is to:

You will also need to prepare a sample of aspirin.

You should:

- 1. Research how to make aspirin from salicylic acid and purify it in order to write a method and apparatus list.
- 2. Identify any safety considerations
- 3. You should also research how to test if your aspirin sample is pure. You should find tests to do this and evaluate their reliability.

Make sure you include any references you have used for this work and have included the dates you accessed any websites.

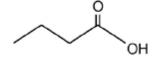
You should also complete the attached exam questions to consolidate your learning from Year 12 and prepare you for the topics coming up in Year 13.

Organic Chemistry

Q1.

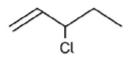
The number of structural isomers of molecular formula C_4H_9Br is

- **A** 5
- B 4
- **C** 3
- **D** 2


(Total 1 mark)

Q2.

Which is a pair of functional group isomers?


- A //
- 0

- B OH
- OH
- 0

D CI

0

(Total 1 mark)

Q3.

How many isomers have the molecular formula C_5H_{12} ?

- A 2
- B 3
- c 4
- D 5

Q4									
		at is th	ne total number o	of structural isor	mers with the	e molecular f	ormula C₂HBr(CIF₃?	
		Α	2	0					
		В	3	0					
		С	4	0					
		D	5	0					
									(Total 1 mark)
Q 5									
ر_		w man	y structural isom	ners, which are e	sters, have tl	he molecular	formula C ₄ H ₈ 0	O ₂ ?	
	Α	2							
	В	3							
	C	4							
	D	5							(Tatal
									(Total 1 mark)
Q6									
	The	numb	er of structural i	isomers of C₃H₂C	Cl ₆ is				
	Α	2							
	В	3							
	С	4							
	D	5							(Total 1 mark)
									,
Q7									
	Wh	ich one	e of the following	g is a pair of fund	ctional group	isomers?			
	Α	CH₃C	COOCH₂CH₃ and	CH₃CH₂COOCH	3				
	В	(CH ₃)) ₂ CHCH(CH ₃) ₂ an	nd (CH ₃) ₃ CCH ₂ CH	l ₃				
	C	CH ₃ C	CH₂OCH₃ and (CH	H₃)₂CHOH					
	D	CICH	I₂CH₂CH=CH₂ an	ıd CH₃CH=CHCH	₂ Cl				(Total 1 mark)
									(.otal I illaik)

_	_	
$\boldsymbol{\frown}$	O	
. ,	റ	

How many	structural isomers	which are aldehy	des have the mo	olecular formula C ₅ H ₁₀ O?
I IOVV IIIaiiy		, willer are arderry	ucs, nave the mi	

- **A** 2
- **B** 3
- **C** 4
- **D** 5

(Total 1 mark)

Q9.

Which one of the following can exhibit both geometrical and optical isomerism?

- A $(CH_3)_2C=CHCH(CH_3)CH_2CH_3$
- B CH₃CH₂CH=CHCH(CH₃)CH₂CH₃
- C $(CH_3)_2C=C(CH_2CH_3)_2$
- D CH₃CH₂CH(CH₃)CH(CH₃)C=CH₂

(Total 1 mark)

Q10.

Summarised directions for recording responses to multiple completion questions					
A (i), (ii) and (iii) only	B (i) and (iii) only	C (ii) and (iv) only	D (iv) alone		

Isomers of the ester $HCOOCH_2CH_2CH_3$, include

- (i) ethyl ethanoate
- (ii) methyl propanoate
- (iii) butanoic acid
- (iv) butyl methanoate

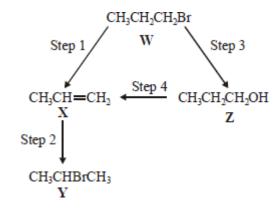
Q11.

This question concerns the preparation of the plastic poly(methyl 2-methylpropenoate) (*Perspex*), starting from propanone.

Which one of the following is **not** a structural isomer of Compound **M**?

$$H_2C=C$$
 H
 $COOCH_3$

(Total 1 mark)


Q12.

How many different alkenes are formed when 2-bromo-3-methylbutane reacts with ethanolic potassium hydroxide?

- **A** 2
- **B** 3
- **C** 4
- D 5

Q13.

For this question refer to the reaction scheme below.

Which one of the following statements is **not** correct?

- **A W** and **Y** are structural isomers.
- **B Z** is a primary alcohol.
- **C Y** gives two peaks in its proton n.m.r. spectrum.
- **C X** has geometrical isomers.

(Total 1 mark)

Q14.

The compound *cis*-retinal is shown below.

Which one of the labelled bonds leads to the prefix in the name?

(Total 1 mark)

Q15.

Propanone can be reduced to form an alcohol. A functional group isomer of the alcohol formed is

- A CH₃CH₂CH₂OH
- B CH₃CH₂CHO
- C CH₃OCH₂CH₃
- D CH₃COCH₃

Q16.

The reaction of bromine with ethane is similar to that of chlorine with ethane	. Three steps in the bromination of
ethane are shown below.	

Step 1	Br₂ → 2Br°
Step 2	Br* + CH ₃ CH ₃ → CH ₃ CH ₂ * + HBr
Step 3	CH ₃ CH ₂ • + Br ₂ CH ₃ CH ₂ Br + Br•

(a)	(i)	Name this type of mechanism.	
-----	-----	------------------------------	--

(ii) Suggest an essential condition for this reaction.

(iii) Steps 2 and 3 are of the same type. Name this type of step.

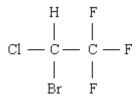
(iv) In this mechanism, another type of step occurs in which free-radicals combine. Name this type of step. Write an equation to illustrate this step.

Type of step ______

(b) Further substitution in the reaction of bromine with ethane produces a mixture of liquid organic compounds.

(i) Name a technique which could be used to separate the different compounds in this mixture.

(ii) Write an equation for the reaction between bromine and ethane which produces hexabromoethane, C_2Br_6 , by this substitution reaction.



(c) The compound 1,2-dibromo-1,1,2,2-tetrafluoroethane is used in some fire extinguishers. Draw the structure of this compound.

(5)

(2)

(d) Halothane is used as an anaesthetic and has the following structure.

(i) Give the systematic name of halothane.

(ii) Calculate the M_r of halothane.

(iii) Calculate the percentage by mass of fluorine in halothane.

(3) (Total 11 marks)

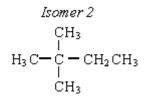
Q17.

The correct systematic name for

- A 2-ethyl-3,4-dimethylpent-2-ene
- B 4-ethyl-2,3-dimethylpent-3-ene
- C 2,3,4-trirnethylhex-3-ene
- D 3,4,5-trimethylhex-3-ene

(Total 1 mark)

Q18.


The correct name for the alkene monomer which forms the polymer shown below is

- A 2-methyl-3-ethylpropene
- B 2-methylpent-2-ene
- C 2-methylpent-3-ene
- D 4-methylpent-2-ene

Q19.

The alkanes form an homologous series of hydrocarbons. The first four straight-chain alkanes are shown below.

propane butane	CH ₄ CH ₃ CH ₃ CH ₃ CH ₂ CH ₃ CH ₃ CH ₂ CH ₃	
(i) State what is	s meant by the term <i>hydrocarbon</i> .	
(ii) Give the g	eneral formula for the alkanes.	
(iii) Give the n	nolecular formula for hexane, the sixth member of the series.	
Each homologou series.	s series has its own general formula. State two other characteristics of an homologou	JS
Branched-chain s	tructural isomers are possible for alkanes which have more than three carbon atoms.	
	tructural isomers are possible for alkanes which have more than three carbon atoms.	
(i) State what		

Mana	
Name	

(iii) Give the structures of **two** other branched-chain isomers of hexane.

Isomer 3

Isomer 4

(6)

- (d) A hydrocarbon, **W**, contains 92.3% carbon by mass. The relative molecular mass of **W** is 78.0
 - (i) Calculate the empirical formula of **W**.

(ii) Calculate the molecular formula of ${\bf W}$.

(4)

Q20.

$$CH_{3}CH_{2}C = CCH_{3}$$
 The correct systematic name for
$$CH_{3}CH_{2}C = CCH_{3}$$
 is

- A 2,3-diethylbut-2-ene
- B 2-ethyl-3-methylpent-2-ene
- C 4-ethyl-3-methylpent-3-ene
- D 3,4-dimethylhex-3-ene

(Total 1 mark)

Q21.

Four isomers with the formula C_4H_9OH are given below.

Isomer	Name
CH₃CH₂CH₂CH₂OH	butan-1-ol
CH ₃ CH ₃ —C—CH ₃ OH	2-methylpropan-2-ol
СН3—С—СН2ОН СН3	
CH3CH2—CH—CH3 OH	

- (i) Complete the naming of the isomers in the table above.
- (ii) Name the type of isomerism shown by these four isomers.

(Total 3 marks)

Q22.

The table below gives some of the names and structures of isomers having the molecular formula C_4H_9Br

Structure	Name
CH₃CH₂CH₂CH₂Br	
CH₃ H₃C — C — CH₃ ■r	2-bromo - 2-methypropane
	1-bromo - 2-methypropane
CH₃CH₂— CH — CH₃ B r	2-methypropane

Complete the table.

(Total 2 marks)

Q23.

Which is the mechanism for this conversion?

A Addition-elimination

0

B Electrophilic substitution

0

C Free-radical substitution

0

D Nucleophilic substitution

Q24.

Which species can act as a nucleophile?

A NH₄⁺

0

B CH₃OH

0

C CH₄

0

D H⁺

0

(Total 1 mark)

Q25.

Which equation represents an initiation step?

- A CH₃CH₂CHBr + Br₂ → CH₃CH₂CHBr₂ + Br

0

 $\mathsf{B} \quad \mathsf{O}_3 \ + \ \dot{\mathsf{Cl}} \ \longrightarrow \ \mathsf{O}_2 \ + \ \dot{\mathsf{Cl}} \mathsf{O}$

0

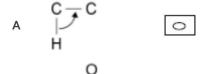
 \circ

- $_{\text{C}}$ RCH $_{2}$ CH $_{2}$ + H $_{2}$ C=CH $_{2}$ \longrightarrow RCH $_{2}$ CH $_{2}$ CH $_{2}$ CH $_{2}$
- D CH₃CFCl₂ → CH₃CFCl + Cl

(Total 1 mark)

Q26.

The reaction sequence shows how CH₃CH₃ can be converted into BrCH₂CH₂Br

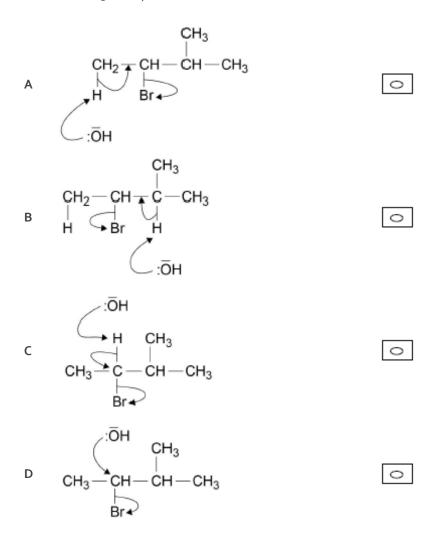

Which step occurs by nucleophilic substitution?

- A Step A
- B Step B
- C Step C
- D Step D

Q27.

In concentrated alkali, propanone reacts with hydroxide ions to form an equilibrium mixture as shown.

Which curly arrow does not appear in the mechanism of this reaction?


(Total 1 mark)

Q28.

Which of the arrows, labelled A, B, C or D in the mechanism in the diagram, is **not** correct?

Q29.

Which of the following is a correct mechanism for the formation of 2-methylbut-2-ene from 2-bromo-3-methylbutane?



 $\textbf{Q30.} \ \ \text{The following table gives the names and structures of some structural isomers with the molecular formula C_5H_{10}.}$

	Name of isomer	Structure
lsomer 1	pent-2-ene	CH₃CH = CHCH₂CH₃
Isomer 2	cyclopentane	
Isomer 3	3-methylbut-1-ene	(CH ₃)₂CHCH = CH₂
Isomer 4	2-methylbut-2-ene	$(CH_3)_2C = CHCH_3$
Isomer 5	2-methylbut-1-ene	$H_2C = C(CH_3)CH_2CH_3$

(a) Isomer **1** exists as E and Z stereoisomers.

((i)	State the meaning	of the term	stereoisomers
١	U,	Julie the meaning	of the term	316160130111613

(ii) Draw the structure of the E stereoisomer of Isomer 1.

(1)

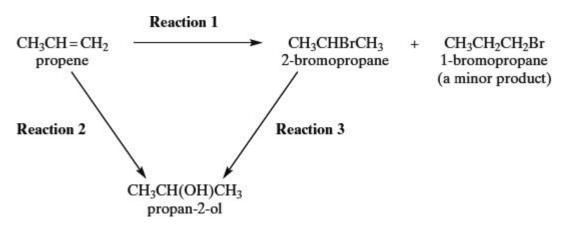
(2)

		te what you would observe with Isomer 1 and with Isomer 2. agent	
	Ob	servation with Isomer 1	
	Ob	servation with Isomer 2	
			(
(c)		Table A on the Data Sheet when answering this question. mer 3 and Isomer 4 have similar structures.	
	(i)	State the infrared absorption range that shows that Isomer 3 and Isomer 4 contain the same functional group.	
	(ii)	State one way that the infrared spectrum of Isomer 3 is different from the infrared spectrum of Isomer 4 .	(
(d)	Two	alcohols are formed by the hydration of Isomer 4.	(
u	Dra	w the displayed formula for the alcohol formed that is oxidised readily by acidified potassium nromate(VI).	

(1)

	(i)	Name and outline a mechanism for the reaction of Isomer 4 with hydrogen br 2-methylbutane as the major product.	omide to give 2-bromo-
		$(CH_3)_2C = CHCH_3 + HBr \longrightarrow (CH_3)_2CBrCH_2CH_3$	
		Name of mechanism	
		Mechanism	
			(5)
	(ii)	The minor product in this reaction mixture is 2-bromo-3-methylbutane.	
		Explain why this bromoalkane is formed as a minor product.	
			(2)
(f)		e and outline a mechanism for the following reaction to form Isomer 5 . se the role of the hydroxide ion in this reaction.	
	(CH	$H_2C = C(CH_3)CH_2CH_3 + KBr + H_2O$	
	Nar	ne of mechanism	
	Med	chanism	
	Role	e of hydroxide ion	
			(5) (Total 21 marks)
			•

(e) Isomer 4 reacts with hydrogen bromide to give two structurally isomeric bromoalkanes.


Q31.

The mechanism for the reaction of methane with fluorine is a free-radical substitution similar to the chlorination of methane.

Outline the following steps in the mechanism for the reaction of methal fluoromethane, $\mbox{CH}_3\mbox{F}$	ane with fluorine to form
Initiation step	
First propagation step	
Second propagation step	
A termination step	
Write an overall equation for the reaction of fluorine with fluoromethal	ne to form tetrafluoromethane.

Q32.

Consider the following reaction scheme.

(a)	(i)	Name the	machanism	for Reaction 1
(d)	(1)	Maille tile	IIIeciiaiiisiii	TO REACTION T

(ii)	Explain why 1-bromopropane is only a minor product in Reaction 1 .

(1)

(Total 5 marks)

(b)	Give a suitable reagent and state the essential conditions required for Reaction 3 .	
	Reagent	
	Conditions	
(c)	The reagent used for Reaction 3 can also be used to convert 2-bromopropane into propene. Stat different conditions needed for this reaction.	(2) e the
		(1
(d)	Reaction 2 proceeds in two stages.	
	Stage 1 $CH_3CH=CH_2 + H_2SO_4 \rightarrow CH_3CH(OSO_2OH)CH_3$	
	Stage 2 $CH_3CH(OSO_2OH)CH_3 + H_2O \rightarrow CH_3CH(OH)CH_3 + H_2SO_4$	
	(i) Name the class of alcohols to which propan-2-ol belongs.	
	(ii) Outline a mechanism for Stage 1 of Reaction 2 , using concentrated sulphuric acid.	
	(iii) State the overall role of the sulphuric acid in Reaction 2 .	
		(6)
		(Total 12 marks)

3.6 Periodicity - Period 3 Elements and their Oxides

(a)	Explain why the atomic radii of the elements decrease across Period 3 from sodium to chlor	ine.
(b)	Explain why the melting point of sulfur (S_8) is greater than that of phosphorus (P_4).	
(-)		
(c)	Explain why sodium oxide forms an alkaline solution when it reacts with water.	
(d)	Write an ionic equation for the reaction of phosphorus(V) oxide with an excess of sodium hy	droxide solution
/		

(Total 7 marks)

xplain why the oxides of the Period 3 elements sodium and phosphorus have different melting points. In your answer you should discuss the structure of and bonding in these oxides, and the link between electronegativity and the type of bonding.
chemical company has a waste tank of volume 25 ooo dm 3 . The tank is full of phosphoric acid (H $_3$ PO $_4$) solution formed by adding some unwanted phosphorus(V) oxide to water in the tank.
A 25.0 cm 3 sample of this solution required 21.2 cm 3 of 0.500 mol dm $^{-3}$ sodium hydroxide solution for complete reaction.
Calculate the mass, in kg, of phosphorus(V) oxide that must have been added to the water in the waste tank.

		(5) (Total 15 marks)
• This	guartian is about some David a claments and their evides	
	question is about some Period 3 elements and their oxides.	
(a)	Describe what you would observe when, in the absence of air, magnesium is heated vapour at temperatures above 373 K. Write an equation for the reaction that occurs.	d strongly with water
	Observations	_
	Equation	(3)
(b)	Explain why magnesium has a higher melting point than sodium.	3/
(D)	Explain why magnesion has a higher melting point than sociom.	
	(Extra space)	
		(2)
(c)	State the structure of, and bonding in, silicon dioxide. Other than a high melting point, give two physical properties of silicon dioxide t structure and bonding.	hat are characteristic of its
	Structure	
	Bonding	-
	Physical property 1	
	Physical property a	

Q3.

		(4)
(d)	Give the formula of the species in a sample of solid phosphorus(V) oxide. State the structure of, and describe fully the bonding in, this oxide.	
	Formula	-
	Structure	-
	Bonding	_
		-
		-
		- (4)
(e)	Sulfur(IV) oxide reacts with water to form a solution containing ions.	
	Write an equation for this reaction.	
		-
40		(1)
(f)	Write an equation for the reaction between the acidic oxide, phosphorus(V) oxide magnesium oxide.	, and the basic oxide,
		-
		(1) (Total 15 marks)
Q4.	nsider the following oxides.	
	Na ₂ O, MgO, Al ₂ O ₃ , SiO ₂ , P ₄ O ₁₀ , SO ₃	
(a)	Identify one of the oxides from the above which	
	(i) can form a solution with a pH less than 3	
	(ii) can form a solution with a pH greater than 12	_
		(2)
(b)	Write an equation for the reaction between	
	(i) MgO and HNO ₃	
	(ii) SiQ and NaQU	_
	(ii) SiO₂ and NaOH	

(iii) Na₂O and H₃PO₄

							(Tot
The melti	ng points of som	e of the oxides	formed by P	eriod 3 elemei	nts are given ir	n a random or	der belov
	Oxide	А	В	С	D	E	
	T _m /°C	2852	-73	1610	1275	300	
E (ii) Giv	Explanation Ve a simple chemoxide. State the o	ical test which bservation you	could be use	d to show whi	ch of the oxide	_	is sodiun
(Observation					_	
	calcium oxide ca coal-fired powei						
(i) Wr	ite an equation f	or the action of	heat on calc	ium carbonate	<u>.</u>	_	
_							

					(Total 10 n
					(Total 10 n
	a link between the problem is below shows the me				icture and bonding.
		Na₂O	SiO₂	P ₄ O ₁₀	
	T _m /K	1548	1883	573	_
	erms of crystal structu	re and bonding, expl	ain in each case why t	he melting points	of sodium oxide and
	icon dioxide are high.				
Na	a ₂ 0				
_					
_					
Si	02				
	dict whether the melti pint of sodium oxide a			e same as, or lowe	er than the melting
	ediction				
	planation				
LX	.pianation				
_					
_			than sodium oxide.		
c) Pho	sphorus(V) oxide has a	a lower melting point			
	sphorus(V) oxide has				
c) Pho		a lower melting point of and bonding in ph			
	State the structure	of and bonding in ph			

(iii) Despite the additional cost, operators of power stations are encouraged to remove the sulfur dioxide from flue-gases. Explain why this may not be environmentally beneficial.

	(ii) Explain why the melting point of phosphorus(V) oxide is low.	
		(1)
(d)	Separate samples of phosphorus(V) oxide and sodium oxide were reacted with water. In each case, predict the pH of the solution formed and write an equation for the reaction	1.
	pH with P ₄ O ₁₀	
	Equation	
	pH with Na ₂ O	
	Equation	
		(4)
(e)	Write an equation for the reaction between Na_2O and P_4O_{10} State the general type of reaction illustrated by this example.	
	Equation	
	Reaction type	
		(2) (Total 16 marks)
	3.2 Periodicity - Physical Properties of Period 3 Elemen	ts
Q1.		
(a)	Explain why the atomic radii of the elements decrease across Period 3 from sodium to chlo	rine.
		
		(2)

(c)	Explain why sodium oxide forms an alkaline solution when it reacts with water.	(2)
(4)	Write an ionic equation for the reaction of phosphorus(//) evide with an everes of	(2)
(d)	Write an ionic equation for the reaction of phosphorus(V) oxide with an excess of s	sodiom nydroxide solution.
		(1) (Total 7 marks)
		(12,7,1,1,1,1
Q2. (a)	State the meaning of the term <i>first ionisation energy</i> of an atom.	
		(2)
(b)	Complete the electron arrangement for the Mg ²⁺ ion.	
	1S ²	(1)
(c)	Identify the block in the Periodic Table to which magnesium belongs.	
		(1)
(d)	Write an equation to illustrate the process occurring when the second ionisation e measured.	energy of magnesium is
		(1)

(b) Explain why the melting point of sulfur (S_8) is greater than that of phosphorus (P_4).

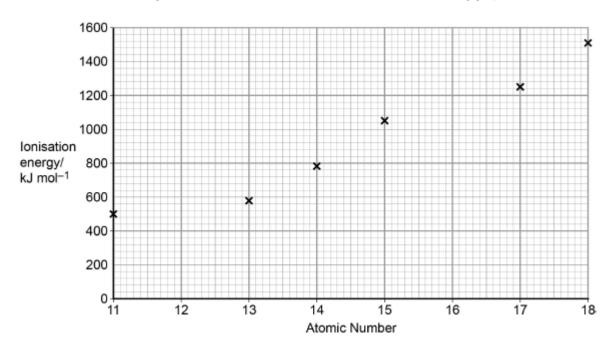
(e)	The Ne atom and the Mg ²⁺ ion have the same number of electrons. Give two reasons why the first ionisation energy of neon is lower than the third ionisation energy of magnesium.	
	Reason 1	
	Reason 2	
	Neuson 2	(2)
(f)	There is a general trend in the first ionisation energies of the Period 3 elements, Na – Ar	
	(i) State and explain this general trend.	
	Trend	
	Explanation	
	(ii) Explain why the first ionisation energy of sulphur is lower than would be predicted from the general trend.	
	(Total 12 n	(5) narks)
	V • • • • • • • • • • • • • • • • • • •	,
Q3.	When the minimum is added to an accompanie of accompanies of accompan	
(a)	When aluminium is added to an aqueous solution of copper(II) chloride, CuCl ₂ , copper metal and aluminium chloride, AlCl ₃ , are formed. Write an equation to represent this reaction.	
(b)	(i) State the general trend in the first ionisation energy of the Period 3 elements from	(1)
(b)	(i) State the general trend in the first ionisation energy of the Period 3 elements from Na to Ar.	
	(ii) State how, and explain why, the first ionisation energy of aluminium does not follow this general trend.	
		(4)
(c)	Give the equation, including state symbols, for the process which represents the second ionisation energy of aluminium.	
		(1)

(d)	State and explain the trend in the melting points of the Period 3 metals Na, Mg and Al. Trend	
	Explanation	
		(3) (Total 9 marks)
Q4.	State the meaning of the term <i>electronegativity</i> .	
		(2)
(b)	State and explain the trend in electronegativity values across Period 3 from sodium to chlorine. Trend	
	Explanation	(3)
(c)	What is meant by the term first ionisation energy?	(3/
		(2)
(d)	The diagram below shows the variation in first ionisation energy across Period 3.	
	isation	
ene	argy	
	Na Mg Al Si P S Cl Ar	
	Period 3 element (i) What is the maximum number of electrons that can be accommodated in an s sub-level?	

What evidence from the diagram supports your answer to part (d)(i)?
What evidence from the diagram supports the fact that the 3p sub-level is higher in energy than the 3s?
What evidence from the diagram supports the fact that no more than three unpaired electrons can be accommodated in the 3p sub-level?
(Total 12 marks
Q are oxides of Period ₃ elements.
de ${\bf P}$ is a solid with a high melting point. It does not conduct electricity when solid but does conduct en molten or when dissolved in water. Oxide ${\bf P}$ reacts with water forming a solution with a high pH.
de $oldsymbol{Q}$ is a colourless gas at room temperature. It dissolves in water to give a solution with a low pH.
Identify ${\bf P}$. State the type of bonding present in ${\bf P}$ and explain its electrical conductivity. Write an equation for the reaction of ${\bf P}$ with water.
Identify \mathbf{Q} . State the type of bonding present in \mathbf{Q} and explain why it is a gas at room temperature. Write an equation for the reaction of \mathbf{Q} with water.
hydroxide of a Period 3 element. It is insoluble in water but dissolves in both aqueous sodium roxide and aqueous sulphuric acid.
Give the name used to describe this behaviour of the hydroxide.
Write equations for the reactions occurring.
Suggest why R is insoluble in water.
(Cotal 15 marks

Q5.

(a)


(b)

Q6.

This question is about Period 3 of the Periodic Table.

(a)	Deduce which of Na ⁺ and Mg ²⁺ is the smaller ion. Explain your answer.	
	Smaller ion	
	Explanation	
		(2)
(b)	Write an equation to represent the process that occurs when the first ionisation energy for sodium is measured.	
		(1)

(c) The first ionisation energies of some Period 3 elements are shown in the following graph.

Complete the graph by plotting the approximate first ionisation energy values for magnesium and sulfur.

Explain why the first ionisation energy of sulfur is different from that of phosphorus.

(4)

(Total 7 marks)

Additional Reading/ Supporting Resources

Please record all your additional reading on the attached additional reading log.

Topic 1: Using Plastics in the Body

Available at: https://www.stem.org.uk/system/files/elibrary-resources/2017/05/Using%20plastics%20in%20the%20body.pdf

This Catalyst article looks at how scientists are learning to use polymers for many medical applications, including implants, bone repairs and reduction in infections.

Topic 2: Catching a Cheat

Available at: https://www.stem.org.uk/system/files/elibrary-resources/2017/03/Catching%20a%2ocheat.pdf

This Catalyst article looks at analytical chemists who are involved in many kinds of testing, including drug testing to catch cheats in sport.

Topic 3: Diamond: More than just a gemstone

Available at https://www.stem.org.uk/system/files/elibrary-resources/2017/02/Diamond%20more%20than%20just%20a%20qemstone.pdf

This Catalyst article looks at diamond and graphite which are allotropes of carbon. Their properties, which depend on the bonding between the carbon atoms, are also examined.

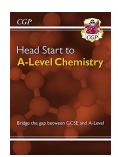
Topic 4: The Bizarre World of High Pressure Chemistry

Available at: https://www.stem.org.uk/system/files/elibrary-resources/2016/11/Catalyst27_1_the_bizarre_world_of_high_pressure_chemistry.pdf

This Catalyst article investigates high pressure chemistry and discovers that, when put under extreme pressure, the properties of a material may change dramatically.

Topic 5: Microplastics and the Oceans

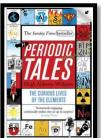
Available at: https://www.stem.org.uk/system/files/elibrary-resources/2016/11/Catalyst27_1_microplastics_%20and_the_oceans.pdf


This Catalyst article looks at microplastics. Microplastics are tiny particles of polymer used in many products. They have been found to be an environmental pollutant especially in oceans.

You can find archived copies of Catalyst magazine here for further reading on a wide range of topics.

https://catalyst-magazine.org/archive/

Book Recommendations

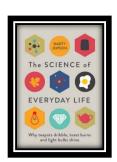


Head Start to A-Level Chemistry

ISBN: 9781782942801

This book goes over crucial topics from GCSE and includes detailed explanations of important A-level topics.

Periodic Tales: The Curious Lives of the Elements (Paperback) Hugh Aldersey-Williams

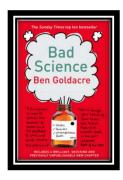


ISBN-10: 0141041455

http://bit.ly/pixlchembook1

This book covers the chemical elements, where they come from and how they are used. There are loads of fascinating insights into uses for chemicals you would have never even thought about.

The Science of Everyday Life: Why Teapots Dribble, Toast Burns and Light Bulbs Shine (Hardback) Marty Jopson

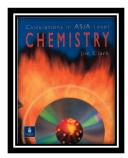


ISBN-10: 1782434186

http://bit.ly/pixlchembook2

The title says it all really, lots of interesting stuff about the things around you home!

Bad Science (Paperback) Ben Goldacre



ISBN-10: 000728487X

http://bit.ly/pixlchembook3

Here Ben Goldacre takes apart anyone who published bad / misleading or dodgy science – this book will make you think about everything the advertising industry tries to sell you by making it sound 'sciency'.

Calculations in AS/A Level Chemistry (Paperback) Jim Clark

ISBN-10: 0582411270

http://bit.ly/pixlchembook4

If you struggle with the calculations side of chemistry, this is the book for you. Covers all the possible calculations you are ever likely to come across. Brought to you by the same guy who wrote the excellent chemguide.co.uk website.

Additional Reading Log:

Additional Reading Title	Dates?	Points of interest	How does it link to the course?

There are a number of websites that will be useful to you now and throughout your time studying A-level Chemistry.

These include:

Physics and Maths Tutor

https://www.physicsandmathstutor.com/chemistry-revision/a-level-aqa/

This website allows you to access a range of resources, from course notes, flashcards and tutorial videos to exam question packs and mark schemes for every topic covered at A-level.

Chemguide

https://www.chemquide.co.uk/

This website has detailed notes on all areas of the A-level course and also identifies and addresses common misconceptions.

Seneca Learning

https://senecalearning.com/en-GB/

This website has many subjects linked to the specific exam boards which you can use to support your knowledge. It allows you to study and then test the information you have learnt.

Isaac Physics

Mastering essential pre-university chemistry — Isaac Physics

This website is useful for physical chemistry, particularly the calculation topics.